If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 4.9t2 + 225t + -620 = 0 Reorder the terms: -620 + 225t + 4.9t2 = 0 Solving -620 + 225t + 4.9t2 = 0 Solving for variable 't'. Begin completing the square. Divide all terms by 4.9 the coefficient of the squared term: Divide each side by '4.9'. -126.5306122 + 45.91836735t + t2 = 0 Move the constant term to the right: Add '126.5306122' to each side of the equation. -126.5306122 + 45.91836735t + 126.5306122 + t2 = 0 + 126.5306122 Reorder the terms: -126.5306122 + 126.5306122 + 45.91836735t + t2 = 0 + 126.5306122 Combine like terms: -126.5306122 + 126.5306122 = 0.0000000 0.0000000 + 45.91836735t + t2 = 0 + 126.5306122 45.91836735t + t2 = 0 + 126.5306122 Combine like terms: 0 + 126.5306122 = 126.5306122 45.91836735t + t2 = 126.5306122 The t term is 45.91836735t. Take half its coefficient (22.95918368). Square it (527.1241153) and add it to both sides. Add '527.1241153' to each side of the equation. 45.91836735t + 527.1241153 + t2 = 126.5306122 + 527.1241153 Reorder the terms: 527.1241153 + 45.91836735t + t2 = 126.5306122 + 527.1241153 Combine like terms: 126.5306122 + 527.1241153 = 653.6547275 527.1241153 + 45.91836735t + t2 = 653.6547275 Factor a perfect square on the left side: (t + 22.95918368)(t + 22.95918368) = 653.6547275 Calculate the square root of the right side: 25.566672202 Break this problem into two subproblems by setting (t + 22.95918368) equal to 25.566672202 and -25.566672202.Subproblem 1
t + 22.95918368 = 25.566672202 Simplifying t + 22.95918368 = 25.566672202 Reorder the terms: 22.95918368 + t = 25.566672202 Solving 22.95918368 + t = 25.566672202 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-22.95918368' to each side of the equation. 22.95918368 + -22.95918368 + t = 25.566672202 + -22.95918368 Combine like terms: 22.95918368 + -22.95918368 = 0.00000000 0.00000000 + t = 25.566672202 + -22.95918368 t = 25.566672202 + -22.95918368 Combine like terms: 25.566672202 + -22.95918368 = 2.607488522 t = 2.607488522 Simplifying t = 2.607488522Subproblem 2
t + 22.95918368 = -25.566672202 Simplifying t + 22.95918368 = -25.566672202 Reorder the terms: 22.95918368 + t = -25.566672202 Solving 22.95918368 + t = -25.566672202 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-22.95918368' to each side of the equation. 22.95918368 + -22.95918368 + t = -25.566672202 + -22.95918368 Combine like terms: 22.95918368 + -22.95918368 = 0.00000000 0.00000000 + t = -25.566672202 + -22.95918368 t = -25.566672202 + -22.95918368 Combine like terms: -25.566672202 + -22.95918368 = -48.525855882 t = -48.525855882 Simplifying t = -48.525855882Solution
The solution to the problem is based on the solutions from the subproblems. t = {2.607488522, -48.525855882}
| 2y^2-xy-4x^2=8 | | 225t^2+4.9t-620=0 | | -6x^2+15x+36=0 | | x^2+14x-35=0 | | A=b*h/2 | | 2t^2-2k^2+t-k= | | x^3+3x^2-77x= | | v^3+5x+6=0 | | (p-3)(2p+1)+6=0 | | 10y-5x=5 | | -2+-2+-2= | | 5x+3-(3x-2)=10 | | X^2+8x+10=-7 | | 12x-5y=4 | | ln(x-6)+4=ln(x+3) | | 12-13-5=0 | | 9.16=9 | | 2x+12=-65-9 | | x^2-(2k+3)x+3k+1=0 | | log(x)=56 | | 2w+2v=3 | | 5-(x-3)(x+3)=(x+4)-3x | | m^2-9m+4/2-m | | 1.2=-4.8x | | 7=-14x | | y=(x/2.5)*2x | | (x/2)*2x | | 7x+21=2x-49 | | 7x+21=2x-4 | | 2.5x/2 | | 23x+2+18=3x | | 23x+4+18=3x |